Published: Tuesday, April 2, 2013

Back To Eternity

Planck telescope peers into early universe

Cosmic microwave background seen by Planck.

Cosmic microwave background seen by Planck.

The European Space Agency has just released the first set of comprehensive results from its Planck mission, which has been mapping the cosmic microwave background in order to discover the nature and history of our universe. Acquired by ESA’s Planck space telescope, the most detailed map ever created of the cosmic microwave background  the relic radiation from the Big Bang  was released today revealing the existence of features that challenge the foundations of our current understanding of the Universe.
The image is based on the initial 15.5 months of data from Planck and is the mission’s first all-sky picture of the oldest light in our Universe, imprinted on the sky when it was just 380 000 years old.
At that time, the young Universe was filled with a hot dense soup of interacting protons, electrons and photons at about 2700ºC. When the protons and electrons joined to form hydrogen atoms, the light was set free. As the Universe has expanded, this light today has been stretched out to microwave wavelengths, equivalent to a temperature of just 2.7 degrees above absolute zero.
This ‘cosmic microwave background’  CMB  shows tiny temperature fluctuations that correspond to regions of slightly different densities at very early times, representing the seeds of all future structure: the stars and galaxies of today.
According to the standard model of cosmology, the fluctuations arose immediately after the Big Bang and were stretched to cosmologically large scales during a brief period of accelerated expansion known as inflation.
Planck was designed to map these fluctuations across the whole sky with greater resolution and sensitivity than ever before. By analyzing the nature and distribution of the seeds in Planck’s CMB image, we can determine the composition and evolution of the Universe from its birth to the present day.
The official press release summarizes the results like this:  “Overall, the information extracted from Planck’s new map provides an excellent confirmation of the standard model of cosmology at an unprecedented accuracy, setting a new benchmark in our manifest of the contents of the Universe.”
But because precision of Planck’s map is so high, it also made it possible to reveal some peculiar unexplained features that may well require new physics to be understood.
“The extraordinary quality of Planck’s portrait of the infant Universe allows us to peel back its layers to the very foundations, revealing that our blueprint of the cosmos is far from complete. Such discoveries were made possible by the unique technologies developed for that purpose by European industry,” says Jean-Jacques Dordain, ESA’s Director General.
“Since the release of Planck’s first all-sky image in 2010, we have been carefully extracting and analyzing all of the foreground emissions that lie between us and the Universe’s first light, revealing the cosmic microwave background in the greatest detail yet,” adds George Efstathiou of the University of Cambridge, UK.
Another is an asymmetry in the average temperatures on opposite hemispheres of the sky. This runs counter to the prediction made by the standard model that the Universe should be broadly similar in any direction we look.
Furthermore, a cold spot extends over a patch of sky that is much larger than expected.
The asymmetry and the cold spot had already been hinted at with Planck’s predecessor, NASA’s WMAP mission, but were largely ignored because of lingering doubts about their cosmic origin.
“The fact that Planck has made such a significant detection of these anomalies erases any doubts about their reality; it can no longer be said that they are artefacts of the measurements. They are real and we have to look for a credible explanation,” says Paolo Natoli of the University of Ferrara, Italy.

The writer is student of Computer Science, BRAC University.